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An analytic solution of the problem of determination of aerodynamic forces 

(drag, lift and side force) acting on an arbitrary three-dimensional body whose 
motion satisfies the localization law is derived, It is assumed in the localiza- 
tion law that the body is of convex shape and that the momentum acting on a 
surface element depends only on conditions of flow and the local angle between 
the velocity and the normal to the surface. This law is successfully applied in 
many domains of aerodynamics and dynamics of flight, Particular cases of the 

localization law are, for instance, various modifications of Newtonian law of air 
resitance, laws which determine the action of rarefied gas on a body flying at 
supersonic velocity, and the effect of light pressure on a body. As an example, 
the problem of determination of aerodynamic properties of an elliptic cone is 

considered. 

1. Let us consider the flow around a body in conditions of the localization law Cl], 
i.e. we consider the body to be of convex shape and that the momentum acting on a 

surface element depends only on the conditions of flow and on the local angle between 
the inner normal n to the surface and the unit vector of the stream velocity v. 

According to this theory the dimensionless momentum normalized with respect to the 
dynamic head pv2 / 2 or its projections on the natural coordinates: local pressure p 

and shearing stress z can be represented in the form 

p= i Ak(V.lg, 

R-1 

z = (v-t) z] Bh(v.n)h‘ (1.1) 
k=l k=l 

where t is the unit vector of the tangent to the surface element, iying in the plane of 

vectors v and n, R is the order of the ap~oximating polynomial, and (A,, Bk) =: 
fk (nf, Re, T,) are coefficients which depend on conditions of flow around the body 
and can be obtained with the use of known theoretical or experimental methods. 

We select the system of independent angles a and cp (such system was used in [l] for 
the case of flow around bodies of revolution) which is defined by the relationships 

cos a = (v -iJ, tgcp = - (v.i.J/(s.i.J 

where i,, i, and is are the unit yectors of the system of axes attached to the body. Then 

v = i,cosa _I- i,sinacoscp - iasinolsinrp (1.2) 

The dimensionless coefficient of the total aerodynamic force acting on a three-dimen- 
sional body moving in a flow of gas or light is 

cp = c,v f- c!,j + c,k (1.3) 
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where cX, cy and cZ are the dimensionless coefficients of drag, lift and side force, res- 
pectively, and V, j L= v, / Iv, 1 and k = +- v, / Iv, 1 are unit vectors of the velo- 

city coordinate system. 
Differential relationships were derived for cF in [ 11. For the determination of coef- 

ficients of aerodynamic forces for an arbitrary three-dimensional body,whose motion 
satisfies the assumptions of the localizability law and the arbitrary expansions (1.1) of 

the local momentum taken from [l],we select variables a and rp . Then, using formu- 
las (1.2) and (1.3) and introducing the “reduced” drag coefficient 

c,l (a, cp) = G (a, cP> + NR (1.4) 

we obtain the second order equation in partial derivatives of the elliptic kind 

L [&I = csc2 a& + Ciaa + ctg CXc$ + (R + l)(R + 2) c: = (R + 1) YR (1.5) 

and the relationship 
1 

C% 
= (R + l)c,, c& = -(R + 1)c,sina (I. 6) 

where 

R-l 

NR = -& s (van){? A,(v.n) -I- 2 [(&+I - 
s* k=l 

Bk) 
R~~,‘z (v.II)“’ - B,(v.n)“-‘]]dS 

cI)R= -& -4+(~-~)~l(v~n)2+ 

R-l 

;I [(&+l--Bk){(R --k - l)(~.n)~'"+(k + l)(v.n)"} + 

(R +2)Bk(~.n)~J}dS 

SR is a characteristic area, and integration is carried out over the “illuminated” area 
of surface s* which is determined by the condition (vn) > 0. 

Note that the substitution (1.4) considerably improves the smoothness of the right- 

hand part oftheequation for cX, whichis important for solving this equation. The derived 

system of equations makes it possible to include aerodynamic forces in the general sys- 
tern of dynamic equations. These formulas can be used in experimental and theoretical 

investigations, since with one of the components of aerodynamic forces determined, it is 

easy to calculate the remaining components by formulas (1.6). 
The system (1.5),(1.6) makes it possible to derive the solution for the problem of 

determination of aerodynamic forces acting on three-dimensional bodies in the entire 

range of angles CL and cp. This solution can also be used in problems of optimization 
and establishment of generalized similarity laws under conditions of the localizability 

law P-1. 

2 l The determination of aerodynamic properties of an arbitrary three-dimensional 
body reduces to the solution of Eq. (1.5). In mathematical terms this problem can be 
considered as one of finding function c,l (a, cp) which is continuous and bounded at all 
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points of a sphere of unit radius. 
In variables a and rp which are analogs of a spherical system of coordinates the sphere 

is transformed into a rectangle with boundaries 0 6 cp < 2x and 0 < a < n;. 
The conditions of periodic&y of solution at coincident meridians cp = 0 and CP = 2~ 

of the sphere and the conditions of solution boundedness at the poles of the sphere a= 0 

and a = 3t of the form 

c,r (3, ‘p) /@ = C,l(% ‘p) 1.314z’ “:, /,=, - c:, &a_ (2.1) 

I ;$ cx’ (a, CP) I < WY 1 ‘,iy G1 t&t ‘p) I< c@ 

can be taken as appropriate boundary conditions (of the problem), 
Solution of the boundary value problem (1.5). (2.1) will be derived by the method of 

expansion in eigenf~ctions of the related homogeneous problem. 

Equations for eigenvalues and eigenfunctions of operator L ic,'l are of the form 

The boundary value problem (2.1). (2.2) is a particular case of the boundary value 

problem for the elliptic equation, and the boundary conditions (2.1) of this problem are 
equivalent to homogeneous boundary conditions. 

Equation (2.2) admits the separation of variables, hence we seek a solution of the form 

CX1 (a, v,) c= w (cp)u (a). Separating variables in Eq. (2.2) and boundary conditions 
(2. l), we obtain for function w (cp) the Strum-Liouville problem with the condition of 
solution periodicity at the ends of the integration interval TV [O, 2x1 

KS (CP) + pm (rp) = 0 

w (cp) I,=, = w t 9) I@:: 7 w’ (9) IT==@ = w’ (4 Ip+ 

The eigenvalues of this problem pa ~= 0, pVL = m2 (m = 1.2, . . .) and the cor- 
responding to these eigenfunctions 

constitute the complete system of orthogonal functions along segment cp [O, 2nI and 
are bounded along the latter. 

For each f~, function ~(a) represents a particular case of the homogeneous boundary 
value problem in eigenvalues with the condition of boundedness at the ends of the inte- 

gration interval do, Xl 

u"(a)+ctg @*u'(a) +[(R + l)(R +2)4-h - $-]u(+ 0 (2.3) 

llai_l::1:(~)I<~, lpy(a)l<m (2.4) 

The substitution x = cosa reduces Eq. (2.3) to the general Legendre equation whose 
solution exists for any complex 3, and m [3]. For positive integral m solutions which 
satisfy boundary conditions (2.4) exist only for 

A, = n(n + 1) - (X + l)(K -I- 2), n I 111, IT& -(- 1, nt + 2, . * . (2.3 
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and are “adjoint” Legendre ~ly~omials of the m-th order 

(Y, (3~) denote ordinary Legendre polynomials). Thus the boundary value problem 

(2,3), (2.4) has for each m the eigenvalues X, (2.5) and the related system of orthogo- 
nal eigenfunctions, Hence the complete set of eigenvalues of the finear operator Lf c,‘] 
for bounda~ conditions is defined by 

To that set corresponds the complete closed system of efgenfunctions &, n 

which are ~thogona~ in region 0 Y< cx < n and 0 < ip \r Zn. l 

3. TO solve the nonhomogeneo~ equation (1.5) with boundary conditions we expand 
func~,cn YrB (a,qf in region 0 \( cp 6 2% and 0 < a -< rr into a convergent La- 
place series in eigenfunct~ons (2.7) using the completeness of eigenf~ctio~ in that 

region and the reasonable smoothness of function y~ (CC, 9) . We obtain 

y, (% ‘E) = i b, 2, (cos c1) -i- i ; (bT&, ra cos mcp + (3.1) 

n=o rb=l m=l 

a,, 7a sin mrF) E”,” {cos CX) 
si 9% 

b _2n-i-1” 1 
0,n -- 4;d s\ 

‘p R (a, 9) P, (cos 31) sin a f&J da 
0 a 

m = 1, 2,. * ., n 

Solution of the ~onhumo~e~eo~ problem is also sought in the form of a Laplace series 
with ~determined coefficients cm,n and d,,, 

CX1(ct, cp) = i %, J), (cos a) + i $ (&, 1). cos mip I_ (3.3) 
Yl.==O n=lm=l 

~~,~~~~~~~) ~~~C~S~) 

Since the eigenvalue AReI = 0, hence, as shown in (41, the problem has no solution for 
an arbitrary uTB fos,rp,) in the right-hand part of Eq. (l* 5), For a solution to exist it is 
necessary co impose on function YR (a,rp) thesup~~ementa~ condition for the coeffici- 
ents in the expansion of that function into series (3.2) corresponding to h~+~, tovanish, 

i. e, 
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b o,Rtl = bm,Rtl = am,R+l = 0, m= 1, 2,. . ., R-b1 (3.4) 

The analysis of function YR (a,cp) presented above and specific calculations show that 
for the considered class of problems function YR satisfies condition (3.4). Hence any 
arbitrary linear combination of eigenfunctions (2.7) which correspond to the eigenvalue 

?L Rtl = 0 and is representable in the form 
R+l 

H,, R+~sinm@ e&",,(c,s.) 

where ko,R+lr km,Rfl and H,,,,R+~ are arbitrary constants, will satisfy the considered 

problem. 
It is obvious that function YR+I is in essence a general solution of the related homo- 

geneous problem (1.5), (2.1). The solution of the boundary value problem (1.5), (2.1) 
becomes nonunique and generally contains [2(R + 1) + I] constants of integration 

which have to be determined by the physical conditions of a specific problem. 
The remaining coefficients of solution (3.3) are determined by the coefficients (3.2) 

of expansion of function Yyn (a,(p) and eigenvalues & using formulas 

(R+1)4n,, (H -I- 1) a,. ,?, 
c “~“=((K+l)(H++~((n+l)]’ 

d 
m’n=l(fl+l)(tltZ)-/1(11~-1)1 (3*6) 

Consequently, the final solution of the problem of determination of the coefficient of 

drag for an arbitrary three-dimensional body, which satisfies the localization law for an 
arbi.trary form of expansion of local momentum (1.1) throughout the variation range of 

anglesa andV (0,(~\(2nandO\(a\<n),isoftheform 

c,l (a, q) = YR+I + i Co,nP7,(cos a) + ,$ i (cm,, cm flq t (3.7) 
n=0 11=1 m--1 

n+l2+1 n;ii j-1 

d,,, n sinmrp) P,” (cos a) 

Note that a solution of similar form but with another system of variables was presented 
in [S] for a particular case (Newton’s law of air resistance) without the general statement 
and analysis of the boundary value problem, when expansion (1.1) contains only one non- 
zero coefficient A, # 0. Constants of integration in formula (3.7) can be determined by 
solving the system of linearalgebraic equations which is derived from (3.7) for known 
values of its left-hand part obtained from theoretical or experimental data at [2 (R + 

1) + 11 points. 
The analysis of calculations carried out for snecific bodies shows that the determina- 

tion of constants of integration by using experimental data compensates to a consider- 
able extent the inaccuracy of the “localization method”. Additional conditions related 
to the flow symmetry considerably simplify solution (3.7) and reduce the number of con- 
stants of integration. 

4. The majority of real aerodynamic bodies contain one or more planes of symmetry. 
If ‘p = 0 and 9 = n define the plane of symmetry of the considered body, the non- 

symmetric terms in solution (3.7) and formulas (3.1) and (3.5) vanish GI,, = ~vz,,, = 
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H - 0, the solution contains (R + 2) constants of integration, and is of the form m,n - 
Rfl 

‘: la, q) = 2 km, Rtl co9 mcpPg+, (cos 3) + i i c,,, co9 mcpPz (co3 cl) (4.1) 
TD=O n=o m==o 

n#R+l 

If the plane q = f n/2 is that of the body symmetry, the solution is of the form 

(4.2) 

2 H2m+i, Rtl sin (2m + 1) (Pp”d”,:’ (CO3 U) $ 
VI=0 
m IWI w c2m,n Co3 2mcpPim (co9 a) + 

n=lJ rn=l) 
[b-W21 

2 ~27w,n sin (2m + 1) q~Pi~+~ (COS U) 

m=o I 
n+R-l-i 

The number of coefficients in solution (4.2) required for calculations reduces to half of 

that needed in the general solution (3.7). The number of constants of integration 

&m,R+lr ~2mtIrR+1) is equa1 (R f 2). Ifth e considered body has two planes of sym- 

metry cp == 0, n and cp = + n/2, solution (3.7) is considerably simplified (the se- 
cond and fourth sums in (4.2) disappear) and the number of constants of integration is 

reduced to [I f R / 21. 
It should be pointed out that the described general method of derivation of solution 

(3.7) for the nonhomogeneous elliptic equation (1.5) with boundary conditions (2.1) 

does not exolude the possibility of obtaining a different form of solution of that equation, 

when function yR (a,~) in the right-hand side of the equation is of a special form 
which admits a direct determination of the particular solution F ta,rp) of Eq. (1.5) 

which satisfies conditions (2.1). In that case the solution of the boundary value problem 
(1.5), (2.1) can be presented in the form 

czl (a,rp) = YR+I + F (a7 cp) 

6. As an example of the determination of aerodynamic properties of a three-dimen- 

sional bodv we present the results of calculations for an elliptic cone (Fig. 1). 

c2 

W 

To simplify computations the case of R = 2 
and A,, = A, = 0 was considered. Expansion(l.1) 

b, V’ of local momentum is of the form 

I 
-- -7 

/, if 
p = AZ (v . n)2, z = BI (v . n) (v . t) 

/’ 
J3 

Coefficients A, = 2 (2 - a) and B, = 2 or (where 

u and (J, are the accommodation coefficients of 
Fig. 1 normal and tangent momenta, respectively) corre- 

spond to conditions of free-molecule flow of rare- 
fied gas with diffusion-mirror reflection pattern. Coefficients A, == k and B, = 0 
correspond to the Newtonian hypersonic flow. 

In the range of angles a and q in which the stream flows over the whole surface of 
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the elliptic cone the solution for the “reduced” drag coefficient cxi (a, cp) is of the form 

cr’ (a, qf = k&‘, (~0s a) + kz cos 2 ipPs” (cos a) .f s/a (A, - B,) cos a, 

P, (co9 a) = ‘/z (5 COS3CZ - 3 cos a), Ps? (cos a) = 15 cos a sin2 a 

Since Nz = - BI cos a, heace, in accordance with (1.4), the solution for the physical 
drag coefficient cX (a, cp) is of the form 

e5 (a, 0) = k,Ps (cOS a) + ~~cos~~~~~(COS a) -f- Iis (3 d, + 2 B,) CC@ o 

The constants of integration k, and rE, are determined by known theoretical or experi- 

mental values cxO (cc = 0) and cz* (cc = a *, rp = 0) and Pa (cos a*) = 0 . We have 

ko = cz’= - 5 (3~12 + 2B3, 
kz = cx* - l/s (3Az -+ 2B1) cos a* 

15sin2 a* cos a* 

F~mulas (1.6) yield for the coefficients of lift es, and side force c, the expressions 

1 
cy (a, cp) = J c:, = sin a 

i 
,+ (1 - 5cosz a) + 

5kz cos 2q, (co+’ a + cos 2~) - $ (AZ - &)} 

1 
CZ (u, tp) = - v et Ssma 4 r: lOka siu 2rp cos a sin a 
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